李飞飞发文发布谷歌云AutoML Vision平台
谷歌云机器学习平台( Cloud AI)自从上线以来就以预训练的、可以直接调用的高效机器学习模型吸引了许多企业级用户在其上构建简单的机器学习应用。然而企业总是会有自己专属的需求的,越来越多的企业会不再满足于预定义好的功能,而想要设计和应用更加自定义化的机器学习模型。今天,在谷歌云首席科学家李飞飞和谷歌云研发负责人李佳合著的这篇谷歌云博客中,她们就正式宣告了谷歌云 AutoML 平台的面世。在这里,构建、训练和部署自定义的机器学习模型也变得简单方便,甚至对机器学习不甚了解的企业也可以构建自己的人工智能系统。AI 科技评论把这篇博客全文翻译如下。美丽世界开服一条龙服务 在差不多一年多以前我们两个人共同加入谷歌云的时候,我们都心怀一个使命,那就是让 AI 平民化。我们的目标是降低 AI 的使用门槛,让 AI 对尽可能多的开发者、研究者和商业用户来说变得触手可及。我们谷歌云 AI 团队一直在向着这个目标做出进步。在 2017 年,我们发布了谷歌云机器学习引擎( Cloud Machine Learning Engine),帮助具有机器学习知识的开发者们轻松地构建能处理任何种类的、任意大小的数据的机器学习模型。我们表明了现代机器学习服务;;换句话说就是包括了视觉、语音、NLP、翻译和对话流的 API 们—;可以构建在预训练的基础模型之上,为商业应用提供无可比拟的服务规模和运行速度。我们的数据科学家和机器学习研究者社区 Kaggle 也已经发展到了拥有超过一百万名用户。而今天,墨香开服一条龙服务已经有包括 Box、劳斯莱斯、Kewpie 和 Ocado 在内的超过一万家企使用着谷歌云的 AI 服务。不过除此之外我们还能做很多。现在,全世界的企业中有足够的知识技能和预算以便能够充分享受机器学习和人工智能带来的好处的企业并不多,能创建出高级机器学习模型的人才也非常有限。而且,即便是一个有机器学习/人工智能工程师的企业,构建自定义机器学习模型的过程仍然非常费时、非常复杂,很难管理。虽然谷歌云已经通过 API 提供了预训练好的机器学习模型,足够完成某些特定任务,但是距离我们想要的「把 AI 带个每个人」还是有很长的路要走。为了缩小这其中的距离,以及为了让每个企业都能更轻松地接触并使用 AI,我们今天向大家介绍谷歌云 AutoML。对于只有有限的机器学习知识的企业,谷歌云 AutoML 可以通过谷歌的高级技术手段,比如 learn2learn 和迁移学习,帮助他们动手构建自己的高质量自定义模型。我们相信谷歌云 AutoML 可以让 AI 专家们发挥出更大的生产力、探索 AI 的新领域,石器开服一条龙服务以及帮助技能有限的工程师构建他们曾经只能梦想拥有的强大的人工智能系统。我们发布的首个谷歌云 AutoML 版本将会是云 AutoML Vision,建立自定义图像识别模型会因它而更快、更简单。它的允许直接拖拽的界面可以让你轻松地上传图像、训练和管理模型,然后直接在谷歌云平台上步数这些训练好的模型。在谷歌云 AutoML Vision 的早期测试结果中,分类热门公共数据集 ImageNet 和 CIFAR 已经展现出了优秀的表现,相比通用的机器学习 API 可以更准确、有更低的分类误差。注:凡本网注明来源非参考经济网的作品,均转载自其它媒体,并不代表本网赞同其观点和对其真实性负责。我要的是一款手游 而《仙魔九界O《狼人杀官方》玩家故事你因